
Noise in Antennas

Thus far we have examined how to calculate the power radiated from an antenna and, using

the Friis transmission formula, how to calculate the received power at the other end of

a communication link. However, the received signal power is meaningless unless compared

with the power received from unwanted sources over the same bandwidth. Such noise sources

include thermal radiation from the earth and sky, cosmic background radiation, and random

thermal processes in the receiving system. In today’s wireless environment, additional noise

due to nonstationary radio frequency interference from pagers, cellular phones, etc., often

needs to be considered, but in this analysis we will concentrate on natural sources only.

1 Natural Sources Characterized

1.1 Brightness

Consider the source/receiver configuration shown in Fig. 1. The brightness of the source is
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Figure 1: Radiation from a natural source.

defined to be the electromagnetic flux density (power per unit area) at the receiver per unit



solid angle of source. By dimensional analysis,

(
Power

m2

)
at collector

(
1

m2/R2

)
at source

=
Power · R2

m2 · m2
= Brightness.

From the dimensional analysis we can see that an equivalent definition of brightness is power

per unit area of source per unit solid angle of receiver. Monochromatic brightness is brightness

per unit frequency. Often the term “brightness” only is used, without the monochromatic

qualifier; the meaning is usually clear from the context.

Contrast the definition of brightness with that of flux density: power flow per unit area.

Brightness is suitable for extended sources, while flux is suitable for point sources, as shown

in Fig. 2. Each cross-sectional area (S, S ′, S ′′) intercepts the same total power, but the flux
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Figure 2: Power flux from a point source.

density decreases as energy propagates away from the source. The power intercepted by a

receiver at any point is the flux density times the effective aperture of the receiver, a relation

which we have already used many times when calculating the power received by an antenna.

1.2 Blackbody Radiation

A blackbody is an idealized body which absorbs all electromagnetic energy at all wavelengths

impinging upon it. Since an object in thermal equilibrium emits energy at the same rate

that it absorbs energy, a blackbody also radiates electromagnetic energy at all wavelengths.
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Although no blackbodies exist in nature, many objects (e.g., the sun) behave approximately

like blackbodies over a range of frequencies. From Planck’s Law, the total power per unit

frequency radiated isotropically from a unit area of blackbody at temperature T is

Pν =
2πhν3

c2

1

ehν/kT − 1
, (1)

where ν is the frequency, h is Planck’s constant (6.63×10−34 Joule sec), and k is Boltzmann’s

constant (1.38 × 10−23 Joule Kelvin−1). The MKS unit used for Pν is the Jansky, named

after Karl Jansky, who discovered early in the 1930’s that the galaxy is a source of radio

emissions and hence became the “father of radio astronomy” (1 Jy = 10−26 W m−2 Hz−1).

At long wavelengths, where hν � kT (or, equivalently, ν � 2× 1010 T ), the Rayleigh-Jeans

approximation gives

Pν ≈ 2πhν3

c2

kT

hν
=

2πkT

λ2
. (2)

What is the (monochromatic) brightness of a blackbody? Consider a spherical blackbody

of radius a. Conservation of energy requires that the power emitted from the blackbody is

equal to the power intercepted by a concentric sphere of radius R. Since the power is radiated

from the blackbody isotropically, we can write

4πa2Pν = 4πR2P ′
ν ,

where Pν is the power (per unit area per unit frequency) leaving the surface of the blackbody

and P ′
ν is the power at any point at radius R. Rearranging, we get

P ′
ν

Pν

=
( a

R

)2

,
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and substituting for Pν from Eq. 1,

P ′
ν =

2πhν3

c2

1

ehν/kT − 1

( a

R

)2

Watts m−2 Hz−1. (3)

Equation 3 gives the received flux density per unit frequency at radius R. Then, by definition,

the brightness is the received flux density per unit frequency per unit solid angle of source:

Bν =
2πhν3

c2

1

ehν/kT − 1

( a

R

)2 1

πa2/R2

=
2πhν3

c2

1

ehν/kT − 1

( a

R

)2 R2

πa2

=
2hν3

c2

1

ehν/kT − 1
Watts m−2 Hz−1 sr−1,

(4)

which differs from Eq. 1 dimensionally and by a factor of π in magnitude. The corresponding

Rayleigh-Jeans approximation is

Bν → 2kT

λ2
,

hν

kT
� 1. (5)

1.3 Antenna Temperature

How do we calculate the power captured from an extended source? In Fig. 3 we show a

narrow beam antenna whose pattern is confined to a solid angle dΩ. The beam intercepts
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Figure 3: Power reception from an extended source.
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an extended brightness source, which could be either (i) noise background, or (ii) the signal

of interest! If the antenna is pointed toward the (θ, φ) direction, how much power is received

in bandwidth ∆B?

Prec(θ, φ) =
1

2
Bν(θ, φ)dΩAeff(θ, φ)∆B

=
1

2

2kT (θ, φ)

λ2
dΩAeff(θ, φ)∆B

=
kT (θ, φ)G(θ, φ)dΩ∆B

4π
,

where

G(θ, φ) =
4πAeff(θ, φ)

λ2

is the gain of the antenna. Note that an extra factor of 1/2 appears in the equations above

because antennas can only extract power in a single polarization. Total random power is

partitioned between two (any two) orthogonal polarizations.

The total power received by the antenna is

Ptotal received =
k∆B

4π

∫
4π

G(θ, φ)T (θ, φ)dΩ

= k∆BTant

(6)

where

Tant =
1

4π

∫
4π

G(θ, φ)T (θ, φ)dΩ. (7)

Significant contributions to the effective antenna temperature, Tant, can come from a “large”

product GT over small “areas of sky” or a “small” GT over large “areas of sky.”
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2 Noise in Circuits

2.1 Nyquist’s Law

Referring to the left portion of Fig. 4, what is the noise voltage associated with a resistance

R at temperature T? From Nyquist’s Law, the mean-square voltage due to random thermal
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Figure 4: Thermal noise in resistors: Circuit models.

processes is

〈
V 2

〉
= 4kTRB (8)

where B is the bandwidth. From the equivalent circuit at the right of Fig. 4, the power

transfer to a matched load is

〈V 2〉
4R

= kTB, (9)

which is independent of R. Table 1 gives a few example values for 〈V 2〉1/2
and kTB for

various values of R, T, B.

2.2 Noise in Amplifiers

Now consider the noise in an amplifier, as suggested by the black box of Fig. 5. The noise

power fed into the amplifier is Nin = kTsB, and we denote the noise power coming out of the

amplifier as Nout. (Note that if Rs = Rrad, Ts = Tant.) Since an amplifier at a temperature
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T (K) B (kHz) kTB (dBm) R (Ω) 〈V 2〉1/2
(µV)

300 5 -197 5 × 105 6.4

” ” ” 50 0.064

30 ” -207 5 × 105 2.0

” ” ” 50 0.02

Table 1: Sample resistive noise calculations.
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Figure 5: Noise in amplifiers.

greater than 0 Kelvin must supply some noise, Nout > Nin. We can write Nout as

Nout = (kTeqB) · A = k(Ts + Tamp)B · A (10)

The amplifier temperature, Tamp, is treated as though the noise were added at the front end

of the amplifier, as shown in Fig. 6. The noise figure of an amplifier is the signal-to-noise

k T    B

A
signal

k T Bs amp

Figure 6: Model for amplifier noise.
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ratio at the amplifier input divided by the signal-to-noise ratio at the output:

F =
(S/N)in

(S/N)out

=
S/(kTsB)

S/(kTeqB)
= 1 +

Tamp

Ts

> 1 (11)

Note that the definition of noise figure depends on Ts, which is usually taken as 290 K,

corresponding approximately to room temperature.

For low noise amplifiers (LNAs) it is much easier to work with temperatures alone, rather

than noise figures. For example, for the amplifier chain shown in Fig. 7, we can write the
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Figure 7: Amplifier chain.

signal-to-noise ratio as

SNR =
S · A1 · A2 · · ·

kB((((Ts + TA1)A1 + TA2)A2 + · · · ) · · · )

=
S

Ts + TA1 + TA2/A1 + · · · .
(12)

Thus, the noise contribution of each amplifier is effectively reduced by the gain of the leading

(preceding) amplifiers.

2.3 Lossy elements

How do we account for the effects of “lossy” elements, such as attenuators, transmission

lines, etc.? In Fig. 8m L represents the fraction of power lost in attenuation. The signal
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Figure 8: Noise in lossy elements.

power after attenuation is then S(1 − L) and the noise power is

Nout = kTs(1 − L)B︸ ︷︷ ︸
noise passed through load/attenuator “L”

+ kTphysicalLB︸ ︷︷ ︸
noise added by “L”

.

The attenuator noise figure is

F =
(S/N)in

(S/N)out

=
S/(kTsB)

S(1 − L)/(k(Ts(1 − L) + TphysicalL)B)

=
Ts(1 − L) + TphysicalL

Ts(1 − L)

= 1 +
TphysicalL

Ts(1 − L)
.

(13)

If we let α denote the fraction of power transmitted through the attenuator (i.e., α = 1−L),

then we can write another commonly used expression for the attenuator noise figure:

F |Tphysical=Ts = 1 +
1 − α

α

=
α + 1 − α

α

= α−1.

(14)

For example, a 10 dB attenuator (α = 0.1) has a noise figure of 10 dB.
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We can rewrite the output SNR as

(S/N)out =
S(1 − L)

k(Ts(1 − L) + TphysicalB

=
S

k

(
Ts + Tphysical

(
1

1 − L

))
B

.
(15)

Hence the equivalent front-end temperature of the attenuator is

Tattenuator = Tphysical
L

1 − L
−→ ∞ as L → 1. (16)

We are now in a position to calculate the signal-to-noise ratio for an antenna connected

to an amplifier:

SNR =
Pr

kTsysB
=

PtGtGrλ
2

(4πR)2

1

kTsysB
, (17)

where

Tsys = Tant︸︷︷︸
1
4π

∫
4π GrTskydΩ

+ Tfeed︸︷︷︸
Tphysical

L
1−L

+ TA1 +
TA1

A1

+
TA2

A1A2

+ · · ·︸ ︷︷ ︸
amplifier dependent

.

Due to cosmic background radiation, Tant ≥ 3 K. For fairly efficient systems, values for Tsys

might be 20 K (maser), 50 K (FEMT), 100 K (FET). However, other sources of loss not

directly associated with the antenna/receiver system might also need to be considered. For

example, clouds, raindrops, atmospheric gases, etc., all can act as attenuators for satellite

signals. Some of the signal power goes into heating the clouds, and some of the heat from

the clouds is radiated into the receiving antenna. This loss can be incorporated into our

model as another “L”, as before.

Suppose you are running a high performance, high efficiency ground station with Tsys ≈
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30 K, operating at X-band. A stratus cloud might give 1 dB loss (i.e., L = 0.2). Then

Psig −→ 0.8Psig

and

Tsys −→ 0.8(30 K) + 0.2(300 K) = 84 K.

The ratio of SNRs with and without the cloud is

(S/N)cloud

(S/N)no cloud

=
0.8/84

1/30
≈ −6 dB.

Even though you’ve only lost 1 dB of signal, your SNR decreases by 6 dB!!!

On the other hand, what if Tant is very large, so that

Tant � Tphysical
L

1 − L
+

∑
n

TAn?

Then Tsys ≈ Tant is dominated by noises propagated from the outside, rather than that

introduced by your receiver. This is the case for AM radio (fc ≈ 1 MHz); as long as

Pr/(kTantB) � 1, you can use almost any receiving system. This is why a very short

antenna (L/λ ≈ 1/300) works well enough, although Rrad for a short antenna is very low

and very difficult to match to the receiver!

‘antenna noise.tex’, jb, lt, 5/7/01

11


