M4 Macros for Electric Circuit Diagrams in IXTEX Documents

Contents

1

2

9

Introduction

Using the macros
2.1 Quick start

Pic essentials
3.1 Manuals
3.2

3.3 The planar objects: box, circle, ellipse
3.4 Compound objects
3.5 Other language elements

Basic two-terminal elements
4.1 Macro arguments
4.2 Branch-current arrows
4.3 Labels

Other circuit elements
Directions
Logic gates

Element and diagram scaling
8.1 Pic scaling
8.2 Circuit scaling

Interaction with IATEX

10 PSTricks tricks

11 Developer’s notes

12 Bugs

13 List of macros

1 Introduction

Dwight Aplevich
Version 5.0

The linear objects: line, arrow, spline, arc

Before every conference, I find Ph.D.s in on weekends running back and forth from
their offices to the printer. It appears that people who are unable to execute pretty
pictures with pen and paper find it gratifying to try with a computer|[8].

10

11

13

15
15
15

16

18

18

19

20

This document describes a set of macros, written in the m4 macro language[6], for producing
electric circuits and other diagrams in IATEX documents. The macros evaluate to drawing commands
in pic, a line-drawing language[7] which is readily available and quite simple to learn. The result
is a system with the advantages and disadvantages of TEX itself, since it is macro-based and non-
wysiwyg, and since it uses ordinary character input. The book from which the above quotation is
taken correctly points out that the payoff is in quality of diagrams, at the price of the time spent
in learning how to draw them.

A collection of basic components and conventions for their internal structure are described. For
particular drawings it is often convenient to create new macros, or combinations of them, using
consistent conventions, so macros such as these are only a starting point. The IEEE standard[5]
has been followed. The macros described here make extensive use of the characteristics of pic and
have been designed, where possible, to be an extension of the language.

2 Using the macros

The diagram source file is preprocessed as illustrated in Fig. 1. The source, together with the
predefined macros, is first passed through m4, and then through a pic interpreter that produces a
.tex file to be inserted into the .tex source using the \input command.

.m4
macros

pic A .| .dvi
di -md md interpreter | PIEX T file
iagram

Figure 1: Inclusion of figures and macros in the I TEX document

A file defining a diagram, together with predefined macros, is processed by m4 and then by a
pic interpreter to create a .tex file containing, for example, tpic specials, IXTEX graphics, (or other
graphics commands, such as for mfpic[9] or PSTricks[12]), which WTEX will convert or include in
a .dvi file. The .dvi file is then to be viewed or printed by a driver capable of interpreting any
\special commands inserted by the pic processor.

To convert pic to TeX input one can use[3] gpic -t with a printer driver that understands tpic
specials, typically[11] dvips. In some installations, gpic is simply named pic, but make sure that
GNU pic[3] is being invoked rather than the older Unix pic. Pic processors contain basic macro
facilities, so some of the concepts applied here require only a pic processor.

With judicious use of macros the features of both m4 and pic can be exploited. (The fastidious
reader might observe that there are 3 languages being scrambled: m4, pic, and the tpic, tex or
other output, not to mention the meta-language of the macros, and that this mixture might be a
problem, but experience implies otherwise.)

2.1 Quick start

The contents of file quick.m4 are shown below, to give you enough information to produce basic
labelled circuits such as Figure 2.

Node 1 AA, Node 2 Node 3
+ E N i
KONEE L
Node 0 Node 5 Node 4

Figure 2: Diagram produced by file quick.m4

.PS # Pic input begins with .PS
cct_init # Set defaults

First define the locations of the circuit nodes and corners.
NodeO: (0,0) # Absolute coordinates, in inches.
Nodel: (0,.75)

Node2: dot(at Nodel+(.75,0)) # A dot 0.75 to the right of Nodel
Node3: Node2+(0.5,0) # Location 0.5 to the right of Node2
Node4: (Node3,NodeO) # Location (Node3.x,NodeO.y)

Node5: dot(at (Node2,NodeO))

Draw the elements from node to node, with labels:
source(up_ from NodeO to Nodel); llabel(-,v_s,+)
resistor(right_ from Nodel to Node2); rlabel(,R,)
capacitor(down_ from Node2 to Nodeb5); rlabel(+,v,-); llabel(,C,)
inductor (down_ from Node3 to Node4); rlabel(,L,); b_current (i)

Add lines as necessary:
line from Node2 to Node3
line from Node4 to NodeO

Omit these if node labels are not required:
"\sl Node 0" at NodeO below rjust
"\sl Node 1" at Nodel above rjust
"\sl Node 2" at Node2 above
"\sl Node 3" at Node3 above ljust
"\sl Node 4" at Node4 below ljust
"\sl Node 5" at Nodeb below
.PE # Pic input ends

To process the file, make sure that the libraries libcct.m4 and libgen.m4 are accessible. Here
it is assumed that they are in your 1ib directory. Verify that m4 is installed.
Now there are at least two possibilities. If you are using gpic, do the following. Type

m4 ~/lib/libcct.m4 quick.m4 > quick.pic
gpic -t quick.pic > quick.tex

At the place in the text where the figure is to be included, put the lines

\begin{figure} [hbt]
\input quick
\centerline{\box\graph}
\caption{Customized caption for the figure}
\label{Symbolic label}
\end{figure}

where the caption and label are customized for the figure. Then IATEX the document.
If you are using dpic with the PSTricks macros, the commands are

m4 ~/1lib/pstricks.m4 ~/1ib/libcct.m4 quick.m4 > quick.pic
dpic -p quick.pic > quick.tex

and the document should have the statement \usepackage{pstricks} in the header. When many
diagrams are to be processed, then a facility such as Unix make, which is also available in several
PC versions, can be used to automate the manual commands given above.

The figure inclusion statements are

\begin{figure} [hbt]
\centering

\input quick
\caption{Customized caption for the figure}
\label{Symbolic label}

\end{figure}

In both cases, the essential line is \input quick which inserts the previously-created file
quick.tex.

Defining absolute node locations, as done in quick.m4, is simple and illustrative of some pic
constructs, but more sophisticated construction of the above diagram would use dimensions relative
to the circuit macro dimen_ or the pic variable linewid, as described in the following sections.

3 Pic essentials

Pic source is a sequence of lines in a file. Usually, each diagram corresponds to a separate file,
but this is not essential. The first line of a diagram begins with .PS with optional following argu-
ments, and the last line is normally .PE. Lines outside these are passed through the pic processor
unchanged.

The visible objects are conveniently divided into two kinds, the linear, or line-like objects line,
arrow, spline, arc, and the planar objects box, circle, ellipse.

The object move is linear but draws nothing. A composite object, or block, is planar and is a
set of simpler objects contained within the square brackets: [objects].

Finally, text strings, typically meant to be typeset by IATEX, have the double quote character
at the beginning and end. Their typeset dimensions are unknown in advance, but can be obtained
as demonstrated in Section 9.

3.1 Manuals

At the time of writing, the classic pic manual[7] can be obtained from URL:
ftp://cm.bell-labs.com/cm/cs/cstr/116.ps.gz

A more complete manual[10] is included in the GNU groff package. Compressed postscript
versions of both are available from

ftp://ece.uwaterloo.ca/pub/dpic/dpic/

In both of the above, explicit use of *roff string and font constructs should be replaced by their
IATEX equivalents as necessary. Further explanation is available, for example, from the gpic ‘man’
page, part of the GNU groff package.

Examples of use of the circuit macros in an electronics course are available on the web[2].

For a discussion of the use of “little languages” in document production, and of pic in particular,
see Chapter 9 of [1]. Chapter 1 of [4] also contains a brief discussion of this and other languages.
Section 9 of this document describes how to overcome the problem mentioned in [4] of determining
the dimensions of typeset text in diagrams.

3.2 The linear objects: line, arrow, spline, arc

A line can be drawn as follows:
line from position to position
where position is defined below, or
line direction distance
where direction is one of up, down, left, right. When used with the m4 macros described here,
it is preferable to add an underscore: up_, down_, left_, right_. The distance is a number or
expression, and the units are in inches, but the assignment
scale = 25.4
has the effect of changing the scale to millimetres, see Section 8.
Lines can also be drawn to any distance in any direction. The example,
line up- 3/sqrt(2) right_ 3/sqrt(2)
draws a line 3 inches long from the current location, at a 45° angle above horizontal.

The above methods of specifying the direction and length of a line are referred to as a linespec
in this document.

Lines can be concatenated. For example to draw a triangle:

line up- sqrt(3) right_ 1 then down_ sqrt(3) right_ 1 then left_ 2

A position can be defined by a coordinate pair, e.g. 3,2.5, more generally using parentheses as
(expression, expression), and finally, using the construction (position, position), which takes the
z-coordinate from the first position and the y-coordinate from the second. A position can be given
a symbolic name beginning with an upper-case letter, e.g. Top: (0.5,4.5). The current position
Here is always defined. The coordinates of a position are accessible, e.g. Top.x and Top.y can be
used in expressions. The center, start, and end of linear objects are valid positions, for example:

line from last line.start to 2nd last arrow.start

Objects can also be named (using a name commencing with an upper-case letter), for example:

Bus23: 1line up right
after which the object can be referenced by its symbolic name, for example:

arc cw from Bus23.start to Bus23.end with .center at Bus23.center

To draw an arc, specify its rotation, starting point, end point, and center, but if any of these
are omitted, sensible defaults are assumed.

The linear objects can be given arrowheads at the start, end, or both ends, for example:

line dashed <- right 0.5

arc <-> height 0.06 width 0.03 ccw from Here to Here+(0.5,0) \

with .center at Here+(0.25,0)

spline —> right 0.5 then down 0.2 left 0.3 then right 0.4

The arrowheads on the arc above have had their shape adjusted using the height and width
parameters.

Finally, lines can be specified as dotted, dashed, or invisible, as in the above example.

3.3 The planar objects: box, circle, ellipse

The planar objects are drawn by specifying the width, height, and position of the center, thus:

A: box ht 0.6 wid 0.8 at (1,1)
after which, in this example, the position A.center is a defined position, and can be written simply
as A. In addition, the compass corners A.n, A.s, A.e, A.w, A.ne, A.se, A.sw, A.nw, are all
defined, as are the dimensions height and width. For example, two touching circles can be drawn
as shown:

circle radius 0.2

circle diameter (last circle.width * 1.2) with .sw at last circle.ne
which also illustrates how to refer to the previously-drawn element if it has not been given a name.

The planar objects can be filled with grey by the £ill number parameter, where number= 0
means black, and number= 1 means white. Omitting the number produces a medium gray. Thus,
for example,

box dashed fill
produces a gray dashed box.

Colours and more elaborate line and fill styles are not part of the basic pic language, but can
be incorporated, depending on the printing device, by inserting \special commands or other lines
beginning with a backslash in the drawing code. In fact, arbitrary lines can be inserted into the
output using

command "string"
where string is the line to be output.

3.4 Compound objects

A group of statements enclosed in square brackets can be placed as if it were a box. Thus, the code
fragment shown is found in a large digital diagram:
Ands: [right.
Andl: AND_gate

line right_ del/2 then down_ del*3/2 \
then left_ Andl.0ut.x-Andl.Inl.x+del then down_ del then right_ del/2
And2: AND_gate with .Inl at Here
line from And2.0ut right_ del/2 then down_ del then right_ del/2
] with .And2.Inl at (K.x+2*del,IC5.Pin9.y)
In the above, each of the gate macros evaluates to a composite object in which the positions
Out, Inl, and others are defined. Several gates and connecting lines are contained in a block that
is placed such that position Inl within And2 is at a predefined position.

3.5 Other language elements

All objects have default sizes, directions, and other characteristics, so part of the specification of
an object can sometimes be profitably omitted.

Another possibility for defining positions is

expression of the way between position and position
which is abbreviated as

expression < position , position >
but care has to be used in giving this construction to m4, since the comma may have to be put
within quotes, ¢, to distinguish it from the m4 argument separator.

Positions can be calculated using expressions containing variables, which must begin with a
lower-case letter, and of which the scope is the current block. Thus, for example,

theta = atan2(B.y-A.y,B.x-A.x)

line to Here+(3*cos(theta),3*sin(theta)).

Expressions are the usual algebraic combinations of primary quantities: constants, environmen-
tal variables such as scale, named variables, horizontal or vertical coordinates, using the constructs
position.x or position.y, dimensions of pic objects, e.g. last circle.rad.

The logical operators ==, !=, <=, >=, >, < apply to expressions, and strings can be tested
for equality or inequality. A modest selection of numerical functions is also provided: the single-
argument functions sin, cos, log, exp, sqrt, int, where log and exp are base-10, the binary
functions atan2, max, min, and the random-number generator rand ().

A pic manual should be consulted for details and more examples, and for other facilities, such
as the branching facility,

if expression then { anything } else { anything },
the looping facility,

for variable = expression to expression by expression do { anything },
operating-system commands, string handling, pic macros, and file inclusion. Local and global
variables and elementary file facilities are available.

4 Basic two-terminal elements

All fundamental two-terminal element macros have been constructed according to the conventions
described below.

First, all drawing macros have default arguments, so that only arguments different from default
need be specified. The arguments are given in Section 13.

Consider the resistor shown in Fig. 3, which also serves as a useful example of pic commands.

- elen_ >

ri dimen. ————*

R1.start L R1l.end
last []

Figure 3: Resistor (with label R1), showing the enclosing block

The first part of the source for Fig. 3 is as follows:

.PS

cct_init
linewid = 2.0
linethick_(2.0)

R1l: resistor

These lines and the remaining source lines are explained below:

1.

The first line invokes an almost-empty macro that initializes local variables used by some
circuit-element macros. This macro can be customized to set line thicknesses, maximum page
sizes, scale parameters, or other global quantities as desired.

By default, the size of two-terminal elements is a multiple of the pic variable 1inewid, which
has initial value 0.5in., so the value 2.0 is assigned to this variable to make a suitably big
diagram for this manual. The body size of an element is determined by the macro dimen_,
which evaluates by default to linewid, and the default element length is elen_, which is
dimen_*3/2 by default. These dimensions can all be customized if necessary. (For resistors,
the length of the body is dimen_/2, and the width is dimen /6.)

The macro linethick_ sets the thickness of subsequent lines (to 2.0pt in the example).

The sequence of drawing commands to which a two-terminal macro is expanded begins with
the command ‘line invis linespec’ where linespec is the first argument of the macro if it
is non-blank, otherwise by default the line is drawn a distance elen_ in the current direction,
which is to the right by default. The invisible line is first drawn, and the element is drawn
on top of the line. The element—rather the initially-drawn invisible line—can be given a
name (R1 in the example, so that positions R1.start and R1.end are defined as shown and
R1.center is also defined). Pic place names and object names begin with upper-case letters,
whereas variable names begin with lower-case letters.

The element body is enclosed by a block, which later can be referenced for placing labels
around the element. The block corresponds to an invisible rectangle of which the top and
bottom are horizontal, and the sides of which are vertical, regardless of the direction in
which the element is drawn. In the diagram a dotted box has been drawn to show the block
boundaries.

The last sub-element, identical to the first, in each two-terminal element is an invisible line
that can also be referenced later to place labels or other elements. This may be over-kill.
If you create your own macros you might choose simplicity over generality, and only include
visible lines.

To produce Fig. 3 the following embellishments were included after the previously-shown source:

thinlines_
box dotted wid last [].wid ht last [].ht at last []

spline <- down 0.2 then down 0.1 right 0.1 then right 0.1 \

from last [].s

"{\sl last} [I" ljust

arrow <- down 0.2 from Rl.start+(0,-0.05); "{\sl Ril.startl}" below
arrow <- down 0.2 from Rl.end+(0,-0.05); "{\sl Rl.end}" below

dimension_(from Rl.start to Rl.end,0.45,{\sl elen_},0.4)
dimension_(right_ dimen_ from R1.c-(dimen_/2,0),0.3,

.PE

{\sl dimen_},0.5)

e The line thickness is set to the default thin value of 0.4pt, and the box displaying the element
body block is drawn. Notice how the width and height can be specified, and the box centre
positioned at the centre of the block.

e The next paragraph draws two objects, a spline with an arrowhead, and a string left justified
at the end of the spline. Other string-positioning modifiers than 1just are rjust, above,
and below. Lines to be read by pic can be continued by putting a backslash as the rightmost
character. Furthermore any position, such as R1.c in the example, has an z-coordinate and
y-coordinate usable in expressions as, for example, R1.c.x and Rl.c.y.

e The last paragraph invokes a macro for dimensioning diagrams. Lines can be broken before
a macro argument because m4 ignores white space before arguments.

—NN— resistor —@— source(,AC)
—NVWWN\— resistor(,6) —®— source(,X)
—YY Y 5
inductor @— source(,,.4)

— 00— inductor (,W)

—‘— source(,"\muA")
— inductor(,, ,M)

. . gap
—00000— inductor(,W,6,M)

consource

—|— capacitor

capacitor(,C)

consource(,I)

consource(,V)

g

diod
rode —|}— battery
diode(,Z)
* —|||||}— battery(,3)
diode(,T)
— 1+ ebox
diode(,B)
— — ebox(,.5,.3)
diode(,LE,R)
—/ —_— switch

fuse

X switch(,,0)
xtal —_—

— M switch(,R,C)

source .
switch(,,,B)

§i

source(,I)
switch(,,C,B)

source(,V)

PPOT M

Figure 4: Two-terminal element macros, with some variations

4.1 Macro arguments

Figs. 4 and 5 are tables of the two-terminal elements included with this package, all drawn with
the current direction to the right, which is the default pic drawing direction. Some elements are
included more than once to illustrate some of their arguments. The arguments are given for each
element in Section 13. In the m4 language, macro arguments are included within parentheses

amp —| — delay(,0.2)

amp(,.3) integrator

delay
integrator(, .4)

Figure 5: Amplifier, delay, and integrator

7Y

following the macro name, without spaces between the name and the opening parenthesis.

The first argument of the two-terminal elements, if included, defines the line direction and length
along which the element is drawn. Other arguments of several macros are used to produce variants
of the default elements. Thus, for example,

resistor(up- 1.25,7)
draws a resistor 1.25 units long up from the current position, with 7 vertices per side. The name
up- is a macro that resets the current macro and pic directional parameters to point up.

4.2 Branch-current arrows

The macro

b_current (label, above_|below_, In|Out, Start|End)
draws an arrow from the start of the last-drawn two-terminal element toward the body. If the
fourth argument is End, the arrow is drawn from the end of the element toward the body. If the
third element is Out, the arrow is drawn out, away from the body. The first argument is an optional

=AM AMN—
resistor(right_ 1.5) resistor(right_ 1.5)
b_current (i) b_current(i,, ,End)

DRYYY AMA—
resistor(right_ 1.5) resistor(right_ 1.5)
b_current (i, ,Out) b_current (i, ,Out,End)

Figure 6: Illustrating b_current

label, of which the default position is the macro above_, which evaluates to above if the current
direction is right, or to 1just, below, rjust if the current direction is respectively down, left, up.
A non-blank second argument specifies the relative position, for example below_, which places the
label below with respect to the current direction, or an absolute position, for example below, or
1ljust, with respect to the arrowhead.

4.3 Labels

Macros for labelling two-terminal elements are included:

1llabel(argl,arg2,arg3)

clabel(argl,arg2,arg3)

rlabel(argl,arg2,arg3)

dlabel(long,lat,argl,arg2,arg3)

The first macro places the three arguments, which are treated as math-mode strings, on the
left side of the element block with respect to the current direction: up, down, left, right. The
second places the arguments along the centre, and the third along the right side. Thus a simple
circuit example with labels is

.PS

cct_init
define(‘dimen_’,0.75)
loopwid = 1; loopht = 0.75
source(up_ loopht); llabel(-,v_s,+)
resistor(right_ loopwid); llabel(,R,); b_current(i)
inductor(down_ loopht,W); rlabel(,L,)
capacitor(left_ loopwid,C); llabel(+,v_C,-); rlabel(,C,)
.PE

Figure 7: A loop with labelled elements

which produces Fig. 7. The macro dlabel performs the above functions for an obliquely-drawn ele-
ment, placing the three macro arguments at vec_(-long,lat), vec_(0,1at), and vec_(long,lat)
respectively relative to the centre of the element.

5 Other circuit elements

Some basic elements are not two-terminal. Fig. 8 shows a ground symbol with and without a stem,
an operational amplifier, and a simple transformer. The ground symbol macro has two arguments:

Inl PI S1
. - >| |(
In2 P2 S2

ground ground(,T) opamp (right_ elen.) down_; transformer(,L)

Figure 8: Miscellaneous basic elements

ground(at position, T)
so that, for example, the lines

move to (1.5,2); ground

ground(at (1.5,2))
have identical effect. Setting the second argument truncates the stem.

The opamp, transformer, and most other non-two-terminal elements are enclosed in a block, and
therefore may be named. They generally contain named locations in the interior. An invisible line
determining length and direction can be optionally specified by the first argument, as for the two-
terminal elements. Instead of positioning by the first line, the enclosing block must be positioned
thus: element(at position), or using its compass corners, thus: element with corner at position,
or, when the block contains a predefined location, thus: element with location at position.

The operational amplifier, with macro

opamp(linespec, -, +)
is enclosed in a block containing the three predefined internal locations shown on the diagram, Inl,
In2, and Out, which can be referenced in later commands, for example as ‘last [].0ut.” The first
argument defines the direction and length of the opamp, but the position is determined either by
predefined enclosing block of the opamp, or by a construction such as ‘opamp with .Inl at Here’
which places the internal position Inl at the specified location. There are optional second and third
arguments for which the defaults are $-$ and $+$ respectively. For example, the following code
fragment places an op amp with three connections as shown:

10

line right 0.2 then up 0.1

A: opamp(up_,,,.4) with .Inl at Here
line right .2 from A.Qut
line down .1 from A.In2 then right .2

The transformer macro is
transformer(linespec, LIR, nP)
and has predefined internal locations P1, P2, S1, and S2. The first argument specifies the direction
and distance from P1 to P2, with position determined by the enclosing block as for opamps. The
second argument places the secondary side of the transformer to the left or right of the drawing
direction. The optional third argument specifies the number of primary arcs. A transformer with
four connections is illustrated as follows:

line right 0.2

up_
A: transformer(,R) with .P1 at Here
line left .2 from A.P2 :}H
line right .2 from A.S2 then up .1
line right .2 from A.S1 then down .1

Fig. 9 shows the variations of bipolar transistor macro
bi_tr(linespec, LIR, P, E)
which contains predefined internal locations E, B, C. The first argument defines the distance and
direction from E to C, with location determined by the enclosing block as for other elements, and the

C
C C C
B
}B B{ B@
E E E E
bi_tr(up. dimen) bi_tr(,R) bi_tr(,,P) bi_tr(,,,E)

Figure 9: Bipolar transistor variants (current direction upward)

base placed to the left or right of the current drawing direction according to the second argument.
Setting the third argument to ‘P’ creates a PNP device instead of NPN, and setting the fourth to
‘E’ draws an envelope around the device. Thus for example, the following code fragment places a
bipolar transistor and connects a ground to the emitter and a resistor to the collector as shown:

up_

Q1: bi_tr(,R) with .B at (.25,.25)

ground(at Q1.E)

line up .1 from Q1.C; resistor(right_ dimen_)

Some FETs with predefined internal locations S, D, and G are also included, with similar
arguments to those of bi_tr, as shown in Fig. 10. The number of possible semiconductor symbols
is very large, so these macros must be regarded as prototypes.

Some other non-two-terminal macros are dot which has an optional argument ‘at location’,
the line-thickness macros, the £ill_ macro, and crossover, which is useful to show non-touching
conductor crossovers, as in Figure 11.

6 Directions

Aside from its block-structure capabilities, looping, and macros, pic has a very useful concept of the
current point and current direction, the latter unfortunately limited to up, down, left, right.
Objects can be drawn at absolute locations or placed relative to previously-drawn objects. These
.m4 macros need to know the current direction so whenever up, down, left, right are used they
should be written as up_, down_, left_, right_ which are macros.

To draw circuit objects in other than the standard four directions, the macros Point_(degrees) ,
point_(radians) , and rpoint_(rel linespec) re-define the direction-cosine macros x_, y_ which are

11

c iR A N
G— G—

S ¢ G—"% S S
j_fet(up- dimen.) e_fet d_fet e_fet(,,,S) d_fet(,,,S)

D _D D D D

- edm odm el el

S S S S S
j-fet(,,P,) e_fet(,,P,) d_fet(,,P,) e_fet(,,P,S) d_fet(,,P,S)

Figure 10: JFET, insulated-gate enhancement and depletion MOSFETS, and simplified versions
of the MOSFETS, as in A. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford University

Press. See also the mosfet and smosfet macros.
cC

RL RL
Ry Ry

IR

—Vee
Figure 11: Bipolar transistor circuit, illustrating crossover

used within element-drawing macros. Thus ‘Point_(-30); resistor’ draws a resistor along a line
with slope -30 degrees. ‘rpoint_(to Z)’ sets the current direction cosines to point to location Z.
Macro vec_(x,y) evaluates to the position (x,y) rotated by the argument of the previous Point_,
point_ or rpoint_ command. The macro rvec_(x,y) evaluates to position Here + vec_(x,y)
and is the principal device used to define relative locations in the circuit macros. Thus, line to
rvec_(x,0) draws a line of length x in the current direction.

Fig. 12 shows a circuit drawn using the above macros. The source for the figure is below, and
illustrates that some hand-placement of labels using dlabel may be useful when elements are drawn
other than horizontal or vertically.

R,

Figure 12: Illustrating elements drawn at oblique angles

% ex02.mé4

12

.PS

define(‘elen_’, ‘dimen_’) # short elements
define(‘sourcerad_’, ‘dimen_*0.2’)

linewid = 0.85

Ct:dot

Point_(-60); capacitor(,C); dlabel(0.14,0.14,,,C_3)
Cr:dot

left_; capacitor(,C); dlabel(0.14,0.14,C_2,,)
Cl:dot

down_; capacitor(from Ct to C1,C); dlabel(0.14,0.14,C_1,,)

T:dot(at Ct+(0,elen_))
inductor(from T to Ct); dlabel(0.12,-0.1,,,L_1)

Point_(-30); inductor(from Cr to Cr+vec_(elen_,0))
dlabel(0,-0.07,,L_3,)
R:dot
L:dot(at (Cl-(Cos(30)*(elen_),0),R))

inductor(from L to Cl); dlabel(0,-0.12,,L_2,)

right_; resistor(from L to R); rlabel(,R_2,)
move down 0.3

resistor(from T to R); dlabel(0,0.15,,R_3,) ; b_current(y,ljust)

line from L to 0.2<L,T>
source(to 0.5 between L and T); dlabel(sourcerad_+0.07,0.1,—,,+)
dlabel(0,sourcerad_+0.07, ,u,)
resistor(to 0.8 between L and T); dlabel(0,0.15,,R_1,)
line to T
.PE

The above source also illustrates that since m4 macro arguments are separated by commas,
any commas that are integral parts of the arguments must be protected either by parentheses as
in inductor (from Cr to Cr+vec_(elen_,0)), by avoiding commas as in writing 0.5 between L
and T instead of 0.5<L,T>, or by multiple single quotes, ¢ ¢,’’, as necessary.

7 Logic gates

Ini
In2-" Out

In3

Figure 13: Illustrating NOR_gate (3)

Fig. 13 shows a 3-input NOR gate, with the enclosing block and predefined internal locations
Out, In1-In3. Gate macros have an optional argument, an integer from 0 to N where N can
be up to approximately 5, defining locations Inl, --- InN. By default N = 2, except for macros
NOT_gate and BUFFER_gate which have one input Inl, unless they are given an argument, which
is treated as the line specification of a two-terminal element. Fig. 14 shows these and the other
basic logic gates included in library 1iblog.m4. These gates are typically not two-terminal elements

13

AND_gate

D >
D OR_gate Do NOR_gate
> [>o

NAND_gate

BUFFER_gate

D X0OR_gate)Do NXOR_gate

Figure 14: Basic logic gate library

NOT_gate

~—

and are normally drawn horizontally or vertically (although arbitrary directions may be set with
e.g. Point_(degrees)). Each gate is contained in a block of typical height 6*L_unit where L_unit
is a macro intended to establish line separation for an imaginary grid on which the elements are

superimposed.
The following source produces the SR flip-flop shown in Fig. 15 to illustrate change of direction.
Note that when a gate is rotated, its input locations retain their positions relative to the gate body.

.PS

log_init

S: NOR_gate
left_

R: NOR_gate at S+(0,-L_unit*9)
line right_ L_unit*3 from S.Out ; line to (Here,R.In2) then to R.In2
line left_ L_unit*3 from R.Out ; line to (Here,S.In2) then to S.In2
line left_ 4*L_unit from S.Inl ; "Ssp_" rjust
line right_ 4#L_unit from R.Inl ; "sp_R" ljust

.PE

R
Figure 15: SR flip-flop

A good strategy for drawing complex logic circuits might be summarized as follows:

e Establish the absolute locations of gates and other major components (e.g. chips) relative to
a grid of mesh size commensurate with L_unit, which is an absolute length.

e Draw minor components or blocks relative to the major ones, using parametrized relative
distances.

e Draw connecting lines relative to the components and previously-drawn lines.
e Write macros for repeated objects.

e Tune the diagram by making absolute locations relative, and by tuning the parameters. Some
useful macros for this are the following, which are in units of L_unit:
AND ht, AND wd: the height and width of basic AND and OR gates
BUF_ht, BUF_wd: the height and width of basic buffers
N_diam: the diameter of NOT circles
A useful exercise might be to reproduce the example of Fig. 16.

In addition to the basic logic gates described here, some experimental flip-flop and IC chip
diagrams are in the distributed example files.

14

S e s Ee—

0 — Do
D
E B
N
C
- YYvyvYyVvVYYYY A

To other latches

Figure 16: Multifunction latch circuit

8 Element and diagram scaling

There are several issues related to scale changes. You may wish to use millimetres, for example,
instead of the default inches. You may wish to change the size of a complete diagram while keeping
the relative proportions of objects within it. You may wish to change the sizes or proportions of
individual elements within a diagram. You must take into account that line widths and arrows are
scaled separately from drawn objects, and that the size of typeset text is independent of the pic
language.

First, pic scaling facilities will be treated, then the scaling of the defined circuit elements will
be described.

8.1 Pic scaling

There are at least three kinds of graphical elements to be considered:

1. The default sizes of linear and planar pic objects can be redefined by assigning values to the
built-in pic variables arcrad, arrowht, arrowwid, boxht, boxrad, boxwid, circlerad,
dashwid, ellipseht, ellipsewid, lineht, linewid, moveht, movewid, textht, textwid.
The ---ht and ---wid parameters refer to the default sizes of vertical and horizontal lines,
moves, etc., except for arrowht and arrowwid which refer to arrowhead dimensions. The
boxrad parameter can be used to put rounded corners on boxes. Assigning a value to the
variable scale multiplies all the built-in pic dimension variables by the new value of scale.

The .PS line can be used to scale the entire drawing, regardless of its interior. Thus, for
example, the line .PS 10/25.4 scales the entire drawing to a width of 10mm.

If the final picture width exceeds the value of maxpswid, which has a default size of 8.5, then
the picture is scaled to this value. Similarly if the height exceeds maxpsht, (default 11), then
the picture is scaled to fit.

2. The finished size of typeset text is independent of pic variables, but can be determined as in
Section 9. Thus, once dimensions = and y are known, then "text" wid z ht y assigns the
dimensions of text.

3. Line widths are independent of diagram and text scaling, and have to be set independently.
For example, the assignment linethick = 1.2 sets the default line width to 1.2pt. The
macro linethick_(points) is also provided, together with default macros thicklines_ and
thinlines._.

8.2 Circuit scaling

Scaling can be used to change the complete diagram, to change the size of elements within it, or to
change unit systems, as follows:

15

1. The circuit elements all have default dimensions which are multiples of the pic variable
‘linewid,’ so setting this variable resets default element dimensions. The scope of a pic
variable is the current block; therefore a sequence such as

resistor
[linewid = linewid*1.5; resistor]
resistor

produces a string of three resistors, the middle one larger than the other two. Alternatively,
it is permissible to redefine the default length elen_ or the body-size parameter dimen_. For
example, adding the line

define(‘dimen_’ ,dimen_%1.2)
after the cct_init line of quick.m4 produces slightly larger element body sizes.

2. Assigning the pic variable ‘scale’ redefines this variable and all other pic built-in size variables.
For example, the following lines modify quick.m4 to use mm:

.PS
scale = 25.4 # mm
cct_init # Set defaults

First define the locations of the circuit nodes and corners.
NodeO: (0,0) # Absolute coordinates
Nodel: (0,19)

Node2: dot(at Nodel+(19,0)) # A dot 19mm to the right of Nodel
Node3: Node2+(13,0) # Location 13mm to the right of Node2

9 Interaction with BTEX

With a little hackery, the dimensions of typeset text can be obtained and used for calculations
within the diagram that contains the text. The difficulty is that font metrics are not known until
IATEX is invoked, and the solution is to process the diagram twice, just as I TEX generally requires
files to be processed twice. First the diagram .m4 source is processed by m4 and a pic processor
to make a .tex file, and the document source is IXTEXed to include the diagram and to write
the required text dimensions into a supplementary file. Then the diagram .m4 source and IATEX
document source are processed again.

The file boxdims.sty distributed with this package should be installed where ITEX can find
it, and should be invoked by \usepackage{boxdims} in the document source. The essential idea
in boxdims.sty is to define a two-argument macro \boxdims which writes out definitions for the
width, height and depth of its typeset second argument into file jobname.dim, where jobname is the
name of the main source file. The first argument of \boxdims is used to construct unique symbolic
names for these dimensions. Thus, the line

box "\boxdims{Q}{\Huge Hi there!}"
has the same effect as

box "\Huge Hi there!"
except that the line

define(‘Q_w’,77.6077pt__)define(‘Q-h’,17.27779pt__)define(‘Q-d’,0.0pt__)dnl
is written into file jobname.dim (and the numerical values depend on the current font).

The following small file, for example, produces the box shown in Figure 17:

.PS
sinclude(man.dim) # The main input file is man.tex
box wid boxdim(Q,w) + 5pt__ ht boxdim(Q,v) + 5pt__ \

16

"\boxdims{Q}{\large$\displaystyle\int_0"T e {tA}dt$}"
.PE

T T
/ etAdt 9_h+Q_d
0 X

—Q-w—+
Figure 17: Fitting a box to typeset text.

First the source file for the figure is processed by m4 and a pic interpreter to produce a . tex file,
then XTEX is run, and then these two steps are repeated. In m4, sinclude (jobname.dim) will read
the named file if it exists. The macro boxdim(name,suffix,default) from libgen.m4 expands the
expression boxdim(Q,w), for example, to the value of Q_w if it is defined, else to its third argument
if defined, else to 0, the latter two cases applying if jobname.dim doesn’t exist yet. The values of
boxdim(Q,h) and boxdim(Q,d) are similarly defined, and for convenience, boxdim(Q,v) evaluates
to the sum of these. Macro pt__ is defined as *scale/72.27 in libgen.m4, to convert points to
scaled inches.

In rare cases, the size of the diagram will affect page breaks, requiring the document source to
be IXTEXed more than twice. To avoid this problem, the third argument of boxdim can be used to
define an approximate initial size.

Another use of the \boxdims macro is in calculating the global dimensions of a diagram. Con-
sider the following example:

.PS
B: box
"Left text" at B.w rjust
"Right text" at B.e ljust
.PE

The pic interpreter cannot know the dimensions of the text to the left and right of the box, and
the resulting diagram is generated using the dimensions of the box alone. Modifying this example
to

.PS
sinclude (jobname.dim)
B: box
"\boxdims{L}{Left text}" wid boxdim(L,w) ht boxdim(L,v) at B.w rjust
"\boxdims{R}{Right text}" wid boxdim(R,w) ht boxdim(R,v) at B.e ljust
.PE

assigns the correct width and height to the text strings, and the picture dimensions are then
calculated correctly. Two macros are included to simplify the above example, which becomes:

.PS
sinclude (jobname.dim)
s_init (unique name)
B: box
s_box(Left text) at B.w rjust
s_box(Right text) at B.e ljust
.PE

The argument of s_init should be unique within jobname.dim. It is used to generate a unique
\boxdims first argument for each invocation of s_box in the current file. If s_init has been omitted,
the symbols “!!” are inserted into the text.

17

10 PSTricks tricks

This section applies only to a pic processor (dpic) that creates PSTricks output and that is capable
of passing lines beginning with ‘\’ directly to the output. Arbitrary PSTricks commands can be
mixed with m4 input to create complicated effects, but some effects are both commonly required
and simple.

The rotation of text is illustrated by the file

.PS

arrow right 0.7 "x-axis" below

arrow up 0.7 from 1st arrow.start "\rput[B]{90}(0,0){y-axis}" rjust
.PE

which produces horizontal text, and text rotated 90° along the vertical line.
Another common requirement is the filling of arbitrary shapes, as illustrated by the following
lines within a .m4 file:

\pscustom[linecolor=black,linewidth=0.4pt,fillstyle=solid,fillcolor=black]{
drawing commands for an arbitrary closed curve
\relax}

In the above example, two lines beginning with \ are passed through to the output. The first
invokes the PSTricks pscustom command, with line, fill, and color options. The second line serves
to insert the required closing brace, but could be replaced by the line

command "}%"
instead. The intermediate lines above define the closed curve to be filled. For colour printing or
viewing, arbitrary colours can be chosen, as described in the PSTricks manual.

PSTricks parameters can be set by inserting the line

\psset{option = value, - - -}

in the drawing commands, as is done in pstricks.m4.

11 Developer’s notes

Because gpic or its equivalent were not then available, several years ago in the course of writing a
book I took a few days off to write a pic-like interpreter (dpic) that produced latex picture objects.
More recently the interpreter has been upgraded to generate mfpic or PSTricks commands, the
latter my preference because of the quality and flexibility of resulting graphics, including facilities
for colour and rotations. In addition, xfig 3.1 output has been added. I preferred the more
powerful m4 macro processor to pic macros, and therefore m4 is required here, although dpic now
supports pic-like macros. Free versions of m4 are available for Unix, Windows, and other operating
systems. If starting over today would I not just use the gpic source and change its back end? Good
question. Maybe. Another question might be, why not use PSTricks alone, or one of the other
drawing packages available these days? The answer is that pic is a good choice for the moderate
geometrical calculations that are sometimes necessary in line drawings. The language is also simple
to learn, and more importantly to read, especially for backslashophobics like me. Although it is
not a sophisticated programming language, pic has built-in looping and block-structure constructs
that combine power with simplicity, and it has stood the test of time. However, no choice of tool is
without compromise, and making good graphics is time-consuming no matter how it is done.

Gpic and dpic pass unaltered any line beginning with a \ character, allowing TeX or PSTricks
macros to be invoked, for example to set parameters such as colour or fill values.

Using the mfpic output of dpic it is possible to produce Metafont alphabets of circuit elements
or their subcomponents, thereby essentially removing dependence on device drivers, but with the
complication of treating every graphic subcomponent as a TEX box.

The xfig output of dpic allows elements to be defined and fine-tuned, and then using the
interactive graphics of xfig to be quickly assembled into a circuit. Further refinement of the elements
might still be required.

18

Because the set of common circuit components and potential macros is huge, an industrial-
strength system developed from the one described here would probably require a combination of
all of the techniques described, including the ability to define and build character sets dynamically
from macros.

12

Bugs

The distributed macros are not written for maximum robustness. Macro arguments could be tested
for correctness and explanatory error messages could be written as necessary, but that would make
the macros more difficult to read and to write. You will have to read them when unexpected results
are obtained or when you wish to modify them.

Here are some hints, gleaned from experience and from comments I have received.

1.

Initialization: If the first element macro evaluated is non-two-terminal or is within a Pic
block, then later macros evaluated outside the block may produce the error message

there is no variable ‘rp_ang’

because rp_ang is not defined in the outermost scope of the diagram. To cure this problem,
put the line

cct_init

immediately after the .PS line, or prior to the first block. It is entirely permissible to modify
cct_init to include commonly-used diagram initializations, such as the thicklines_ state-
ment, and to invoke cct_init at the beginning of every diagram. For completeness, macros
gen_init, log_init, darrow_init are also provided for cases where the circuit library is not
needed.

. Pic objects versus macros: A common error is to write something like

line from A to B; resistor from B to C

when it should be

line from A to B; resistor(from B to C)

This error is caused by an unfortunate inconsistency between the two-terminal elements and
linear pic objects.

Commas: Remember that macro arguments are separated by commas, so commas that are
part of an argument must be protected by parentheses or quotes. Thus,

shadebox(box with .n at w,h)

produces an error, whereas

shadebox(box with .n at w¢,’h)

and

shadebox(box with .n at (w,h))

do not.

. Quotes: Single quote characters are stripped in pairs by m4, so the string

"¢¢inverse’’"

will be typeset as if it were

"‘inverse’".

The cure is to add single quotes.

Dollar signs: The i-th argument of an m4 macro is $i, where ¢ is an integer, so the following
construction can cause an error when it is part of a macro,

"0" rjust below

since $0 expands to the name of the macro itself. To avoid this problem, put the string in
quotes, or write "$¢’0$".

19

6. Name conflicts: Using the name of a macro as part of a comment or string is a simple and
common error. Thus,

arrow right "$\dot x$" above

produces an error message because dot is a macro name. Macro expansion can be avoided by
adding quotes, as follows:

arrow right ‘"$\dot x$"’ above

To help avoid name conflicts, library macros intended only for internal use have names that
begin with m4.

A good rule is to process diagrams in separate files, and to use the TeX \input command to
include the result. If extensive use of strings that conflict with macro names is required, then
another solution is to replace the strings by macros to be expanded by KTEX , for example
the diagram

.PS
box "\stringA"
.PE
with the LaTeX macro
\newcommand{\stringA}{

Circuit containing planar inductor and capacitor}

7. Current direction: Some macros, particularly those for labels, do unexpected things if care
is not taken to preset the current direction using macros right_, left_, up_, down_, or
rpoint_(-) . Thus for two-terminal macros it is good practice to write, e.g.

resistor(up- from A to B); rlabel(,R_1)
rather than
resistor(from A to B); rlabel(,R.1),

which produce different results if the last-defined drawing direction is not up. It might be
possible to change the label macros to avoid this problem without sacrificing ease of use.

8. Pic error messages: Some errors are detected only after scanning beyond the end of the
line containing the error. The semicolon is a logical line end, so putting a semicolon at the
end of lines may assist in locating bugs.

9. Incompatible processors: If you switch between e.g. dpic and gpic, remember that the
libraries are set up to use gpic by default, otherwise pstricks.m4 or mfpic.m4 have to be
processed before the other libraries. To redefine the default behaviour, change the include
statements near the top of the libraries.

13 List of macros

The following table lists the macros in libraries darrow.m4, libcct.m4, liblog.m4, libgen.m4, and
files gpic.m4, mfpic.m4, and pstricks.m4. Some of the example sources contain additional macros,
such as for flowcharts and binary trees.

Internal macros defined within the libraries begin with the characters m4, and are not listed
here.

The libraries define the pic location M4_Tmp and following pic variables:

m4azim m4caz mé4cel m4dll m4dlw mdelev m4i m4j mésaz mé4sel mé4tl m4t2 m4t3 métmp
rp-ang rp-ht rp_len rp_wid.

The library in which each macro is found is given, and a brief description.

20

AND_gate(n) log basic ‘and’ gate, 2 or n inputs

AND ht log height of basic ‘and’ and ‘or’ gates

AND_wd log width of basic ‘and’ and ‘or’ gates

BUFFER_gate (linespec) log basic buffer, 1 input or as a 2-terminal element
BUF ht log basic buffer gate height

BUF_wd log basic buffer gate width

Cos (integer) gen cosine function, integer degrees

E_ gen the constant e

FlipFlop(DITIRS|JK) log experimental flip-flops

G_hht_ log gate half-height

HOMELIB_ all directory containing libraries

Intersect_(Namel, Name2) gen intersection of two named lines

L_unit log logic-element grid size

NAND_gate (1) log ‘nand’ gate, 2 or n inputs

NOR_gate(n) log ‘nor’ gate, 2 or n inputs

NOT_gate (linespec) log ‘not’ gate, 1 input or as a 2-terminal element
NXOR_gate (1) log ‘nxor’ gate, 2 or n inputs

N_diam log diameter of ‘not’ circles

OR_gate(n) log ‘or’ gate, 2 or n inputs

Point_(integer) gen sets direction cosines in degrees

Rect_(radius, angle) gen (deg) polar-to-rectangular conversion
Sin(integer) gen sine function, integer degrees

XOR_gate(n) log ‘xor’ gate, 2 or n inputs

above._ gen string position above relative to current direction
abs_(number) gen absolute value function

amp (linespec, size) cct amplifier

battery (linespec,n) cct n-cell battery, default 1 cell

below. gen string position relative to current direction

bi_tr (linespec,L|R,P,E) cct left or right, N or P-type bipolar transistor, without or with envelope
boxdim(name,h|wld|v,default) gen evaluate, e.g. name_w if defined, else default if given, else 0

v gives sum of d and h values
b_current (label, pos, In|Out,Start |End)

cct draw and label branch-current arrow
capacitor (linespec,C) cct capacitor, straight or curved-plate
clabel (label, label, label) cct centre triple label
consource (linespec,VI|I) cct voltage or current controlled source
cosd(arg (degrees)) gen cosine of a general argument in degrees
cross(at location) gen plots a small cross
cross3D(x1,y1,z1,x2,y2,22) 3D cross product of two triples
crossover (linespec, L|R, Linel, ...)

cct line jumping left or right over named lines
crosswd. gen cross dimension
csdim_ cct controlled-source width
d_fet (linespec,L|R,P,S,E) cct left or right, N or P depletion MOSFET, normal or simplified,

without or with envelope

darrow (linespec,t,t , width) darrow double arrow
dcosine3D(i,x,y,2z) 3D extract i-th entry of triple x,y,z
delay (linespec, size) cct delay element
delay.rad- cct delay radius
dend(at location) darrow close (or start) double line
diff_(a,b) gen difference function
diff3D(x1,y1,2z1,x2,y2,22) 3D difference of two triples
dimen_ cct size parameter for circuit elements
dimension_(linespec, offset, label, label wid, tic offset)

gen macro for dimensioning diagrams

21

diode (linespec,N|B|T|Z|LE,L|R) cct

dlabel (long, lat, label, label,label)

dleft

dline (linespec,t,t, width)
dlinewid

dn_

dot (at location,radius, fill)
dot3D(x1,y1,z1,x2,y2,z2)
dotrad_

down_

dright

dtee (“direction’)

dtor_

e_

e_fet (linespec,L|R,P,S,E)

ebox (linespec, length, ht)
eleminit_(linespec)

elen_

em_arrows (linespec,L|R,U|D)
expe

fuse
Fector(x1,y1,z1,x2,y2,22)

£ill_(number)

gap (linespec, fill)

glabel_

gpic_

grid_(x,y)

ground(at location,T)
hop(LIR,at location)
hoprad_

ht_

inductor (linespec,W,n,M)
integrator (linespec, size)

cct
darrow
darrow
darrow
gen
gen

3D

gen
gen
darrow
darrow
gen
gen

cct

cct
cct
cct
cct
gen
cct
3D

gen
cct
cct
gpic
log
cct
cct
cct
gen
cct
cct

diode: normal, bi-directional, tunnel, zener, LED with arrows L, R

general triple label

double line left turn

double line

width of double lines

sets down relative to current-direction

draw a (filled) dot

dot product of two triples

dot radius

sets current direction to down

double arrow right turn

double arrow tee junction

degrees to radians conversion constant

.e relative to current direction

left or right, N or P enhancement MOSFET, normal or simplified,
without or with envelope

two-terminal box element with adjustable dimensions
internal line initialization

default element length

nonionizing radiation arrows

exponential, base e

fuse symbol

vector with 3-dimensonal arrowhead with top face normal
to x2,y2,z2, projected on current view plane

fill macro, O=black, 1=white

gap with dots

internal general labeller

defined to signify gpic is being used

absolute grid location

ground, without stem for nonblank 2nd arg

conductor crossing another to left or right

hop radius

height relative to current direction

inductor, narrow or wide, 4 or n arcs, without or with magnetic core
integrating amplifier

intersect_(linel.start,linel.end, line2.start,line2.end)

j-_fet (linespec,L|R,P,E)
left_

length3D(x,y,2)
linethick_(number)

lin leng(line-reference)
1ljust_

1label (label,label,label)
loc_(x, y)

loglOE_

loge

1t_

manhattan

mfpic_

mosfet (linespec,L|R,P,D,E)

m4_arrow (linespec, ht, wid)
n_

gen
cct
gen
3D
gen
gen
gen
cct
gen
gen
gen
gen
gen
mfpic
cct

gen
gen

intersection of two lines

left or right, N or P JFET, without or with envelope
left with respect to current direction

Euclidean length of triple x,y,z

set line thickness in points

calculate the length of a line

ljust with respect to current direction

triple lable on left side of the element

location adjusted for current direction

constant log,(e)

logarithm, base e

left with respect to current direction

sets direction cosines for left, right, up, down
defined to signify mfpic is being used

left or right, N or P, enhancement or depletion MOSFET,
without or with envelope

arrow with adjustable head, filled when possible

.n with respect to current direction

22

ne_ gen
neg- gen
nw_ gen

opamp (linespec, label, label, size,P) cct

.ne with respect to current direction
unary negation

.nw with respect to current direction
operational amplifier with —, + or other internal labels, specified size,
and optional power connections
arrow with adjustable open head
(radians) set direction cosines
rectangular-to polar conversion
write out triple for debugging
binary multiplication

3D to 2D projection

set PSTricks parameters

pstricks defined to signify PSTricks is being used

big point size factor, in scaled inches, (*scale/72)

TEX point size factor, in scaled inches, (*scale/72.27)
(radians) polar-rectangular conversion

resistor, n peaks, default 3

set current direction right

right justify with respect to current direction

triple lable on right side of the element

rotates x,y,z about x axis

rotates x,y,z about y axis

rotates x,y,z about z axis

(radians) set direction cosines

Here + position

right with respect to current direction

constant, degrees/radian

location relative to current direction

.s with respect to current direction

generate dimensioned text string using \boxdims from boxdims.sty
initialize s_box string label to name which should be unique
.se with respect to current direction

set projection viewpoint
fill arbitrary closed curve

box with edge shading
sign function

open_arrow (linespec, ht , wid) gen
point_(angle) gen
polar_(x,y) gen
print3D(x,y,z) 3D
prod_(a,b) gen
project(x, (y, (2) 3D
psset_(PSTricks settings) gen
pstricks._
pt_ gen
pt__ gen
rect_(radius, angle) gen
resistor (linespec,n) cct
right_ gen
rjust._ gen
rlabel (label, label, label) cct
rot3Dx(radians,x,y,z) 3D
rot3Dy(radians,x,y,z) 3D
rot3Dz(radians,x,y,z) 3D
rpoint_(angle) gen
rpos_(position) gen
rt_ gen
rtod._ gen
rvec_(x,y) gen
s_ gen
s_box (text) gen
s_init (name) gen
se_ gen
setview(azimuth degrees, elevation degrees)
3D
shade (gray value, closed line specs)
gen
shadebox (box specification) gen
sign_(number) gen
sind(arg (degrees)) gen

smosfet (linespec,L|R,P,D,E) cct

sine of a general argument in degrees
simplified MOSFET left or right, N or P, enhancement or depletion,
without or with envelope

source (linespec,V|I|AC|X|string, diameter)

cct
sourcerad._ cct
sprod3D(a,x,y,z) 3D
sp- gen
sum_(a, b) gen
sum3D(x1,y1,2z1,x2,y2,22) 3D
svec_(x,y) log
SW_ gen
switch(linespec,L|R,C|0,B) cct
thicklines_(number) gen
thinlines_(number) gen
transformer (linespec,L|R,n) cct
twopi_ gen

source, blank or voltage or current or AC or X or labelled
default source radius

scalar product of triple x,y,z by a

evaluates to medium space for gpic strings

binary sum

sum of two triples

scaled and rotated grid coordinate vector

.sw with respect to current direction

SPST switch left or right, blank or closing or opening arrow, or button
set line thickness in points

set line thickness in points

2-winding transformer, left or right, n arcs

27

23

unit3D(x,y,z) 3D unit triple in the direction of triple x,y,z

up-

up__

gen set current direction up
gen up with respect to current direction

vec_(x,y) gen position rotated with respect to current direction
vrot_(x,y,xcosine, ycosine) gen rotation operator
vscal_(number,x,y) gen vector scale operator

w_

wid_

gen .w with respect to current direction
gen width with respect to current direction

xtal (linespec) cct quartz crystal

References

[1]
2]

J. Bentley. More Programming Pearls. Addison-Wesley, Reading, Massachusetts, 1988.

A. R. Clark. Using circuit macros, 1999. Courtesy of Alan Robert Clark at
http://ytdp.ee.wits.ac.za/cct.html.

The Free Software Foundation. Gpic man page, 1992.

M. Goossens, S. Rahtz, and F. Mittelbach. The BTEXGraphics Companion. Addison-Wesley,
Reading, Massachusetts, 1997.

IEEE. Graphic symbols for electrical and electronic diagrams, 1975. Std 315-1975, 315A-1986,
reaffirmed 1993.

B. W. Kernighan and D. M. Richie. The M4 macro processor. Technical report, Bell Labora-
tories, 1977.

B. W. Kernighan and D. M. Richie. PIC—A graphics language for typesetting, user manual.
Technical Report 116, AT&T Bell Laboratories, 1991.

Thomas K. Landauer. The Trouble with Computers. MIT Press, Cambridge, 1995.

T. Leathrum and G. Tobin. Pictures in TEX with metafont, 1996. Mfpic manual.

E. S. Raymond. Making pictures with GNU PIC, 1995. In GNU groff source distribution.
T. Rokicki. DVIPS: A TEX driver. Technical report, Stanford, 1994.

T. Van Zandt. PSTricks user’s guide, 1993.

24

